skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Weisheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Topological semimetals represent a novel class of quantum materials displaying non‐trivial topological states that host Dirac/Weyl fermions. The intersection of Dirac/Weyl points gives rise to essential properties in a wide range of innovative transport phenomena, including extreme magnetoresistance, high mobilities, weak antilocalization, electron hydrodynamics, and various electro‐optical phenomena. In this study, the electronic, transport, phonon scattering, and interrelationships are explored in single crystals of the topological semimetal HfAs2. It reveals a weak antilocalization effect at low temperatures with high carrier density, which is attributed to perfectly compensated topological bulk and surface states. The angle‐resolved photoemission spectroscopy (ARPES) results show anisotropic Fermi surfaces and surface states indicative of the topological semimetal, further confirmed by first‐principle density functional theory (DFT) calculations. Moreover, the lattice dynamics in HfAs2are investigated both with the Raman scattering and density functional theory. The phonon dispersion, density of states, lattice thermal conductivity, and the phonon lifetimes are computed to support the experimental findings. The softening of phonons, the broadening of Raman modes, and the reduction of phonon lifetimes with temperature suggest the enhancement of phonon anharmonicity in this new topological material, which is crucial for boosting the thermoelectric performance of topological semimetals. 
    more » « less
  2. Abstract Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design. 
    more » « less